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1
CACHE WAY PREDICTION

FIELD OF THE DISCLOSURE

This application relates to the field of signal processing,
and more particularly to a processor configured for cache
way prediction.

BACKGROUND

A known method of avoiding excessive “wait states” in a
processor—wherein the processor is idly waiting for a
memory operation to complete rather than doing useful
work—is the use of a dedicated high-speed local memory to
the processor. In various architectures, this high-speed
memory may take the form of one or more caches or L1, 1.2,
or other local memories, each with its own particular advan-
tages and uses. Throughout this Specification, all such local,
high-speed memories are referred to collectively as
“caches.”

Such local memories are, however, only useful when
needed data can be written to or read from the local memory.
A “cache miss” occurs specifically when the processor needs
a value from a particular memory location, and that memory
location has not been loaded into cache. In that case, the
memory subsystem may need to perform a cache fill to fetch
the needed value from memory, during which time the
processor may be at least partly idle.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is best understood from the fol-
lowing detailed description when read with the accompany-
ing FIGURES. It is emphasized that, in accordance with the
standard practice in the industry, various features are not
drawn to scale and are used for illustration purposes only. In
fact, the dimensions of the various features may be arbi-
trarily increased or reduced for clarity of discussion.

FIG. 1 is a block diagram of a processor according to one
or more examples of the present Specification.

FIG. 2 is a block diagram of a computing system accord-
ing to one or more examples of the present Specification.

FIGS. 3A and 3B are block diagrams of multi-way caches
according to one or more examples of the present Specifi-
cation.

FIG. 4 is a block diagram of a cache subsystem according
to one or more examples of the present Specification.

FIGS. 5A-5F are flow diagrams of way prediction accord-
ing to one or more examples of the present Specification.

FIGS. 6A and 6B are flow diagrams of way prediction
according to one or more examples of the present Specifi-
cation.

FIGS. 7A and 7B are flow diagrams of way prediction
according to one or more examples of the present Specifi-
cation.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

Overview

In a first example, there is disclosed a computing system
comprising a processor; a cache comprising Y cache ways;
a register comprising a way region; and circuitry and logic
operational for instructing the processor to: access a value
from the cache comprising reading values from a plurality of

10

25

30

40

45

60

2

ways and keeping only the value from way W; and encode
W in the way region of the register.

In a second example, there is disclosed A cache controller
for accessing a Y-way cache, comprising circuitry and logic
for accessing a value from the cache comprising reading
values from a plurality of ways and keeping only the value
from way W; and encoding W in a way region of a register
for use in predicting which way to check first on subsequent
memory access events.

In a third example, there is disclosed a method for way
prediction in a processor having a Y-way cache, comprising
accessing a value from the cache comprising reading values
from a plurality of ways and keeping only the value from
way W; and encoding W in a way region of a register.

Example Embodiments of the Disclosure

The following disclosure provides many different
embodiments, or examples, for implementing different fea-
tures of the present disclosure. Specific examples of com-
ponents and arrangements are described below to simplify
the present disclosure. These are, of course, merely
examples and are not intended to be limiting. Further, the
present disclosure may repeat reference numerals and/or
letters in the various examples. This repetition is for the
purpose of simplicity and clarity and does not in itself dictate
a relationship between the various embodiments and/or
configurations discussed.

Different embodiments may have different advantages,
and no particular advantage is necessarily required of any
embodiment.

Caches may be divided into different classes, including
“direct-mapped” caches and “N-way” caches among others.
A value from main memory generally resides within a
“cache line” of larger size, L. words. For example, an 8-word
cache line (L=8) is generally mapped so that memory
locations whose addresses only differ in the least significant
3 bits (bits 0 through 2) reside within the same cache line,
and hence within the same location in the cache (each
location stores an entire cache line). Often the subsequent
bits in the address are used to identify the “set” to which the
cache line is mapped. For example, in a cache with 8 sets,
bits 3 through 5 may identify the set to which the cache line
belongs. In other words, only locations whose bits 3 through
5 are b000 may be stored in set 0, while b001s are mapped
to set 1, b010s are mapped to set 2, and so forth.

In a “direct-mapped” cache, each set comprises exactly
one location (“way”) in the cache. This configuration offers
certain advantages in terms of speed, power, and cost, but
these are realized at the cost of flexibility. To load a value
from memory address 0x40, the cache line starting with 0x0
must be displaced by the cache line starting with 0x40, as
both of these addresses are mapped to the same location in
the cache.

Additional flexibility may be realized by dividing each set
into a plurality of N separate ways. In the case of an N-way
cache, N may be an arbitrary value, and is often an even
power of two, such as 2, 4, 8, or 16 cache ways. The addition
of cache ways increases flexibility, but at some compromise
in speed, power, or cost. For example, in this 8-set, 4-way
cache, values from memory addresses 0x0, 0x40, 0x80, and
0xCO may all coexist in cache simultaneously. To provide a
4-way (N=4), 8-set (S=8) cache may require up to NxSx
=256 words of memory, but will often offer better perfor-
mance than a direct-mapped cache of the same size.

Another challenge in providing an N-way cache is that the
cache controller does not necessarily know a priori in which
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way a desired value is stored. Thus, in an example operation,
a cache controller may first read N values or tags from cache,
one from each way in which the value could possibly be
stored. The cache controller then inspects the tags corre-
sponding to each of the cache lines to determine whether any
of them contains the desired value. In a best-case scenario,
the desired location is in cache, and the processor keeps that
one value, while disregarding the other N-1 values read
from the cache. If the desired data is not found anywhere in
cache, then the cache controller performs a cache fill to load
the cache line into cache so that it is available next time a
value in the cache line is required.

Advantageously, this method is fast and effective, but it
comes at the cost of power and complexity. In a modern,
high-efficiency processor, the cache may be accessed on
practically every clock cycle that the processor is active.
Thus, on every clock cycle, N-1 superfluous tags and/or
values are read from cache in the best-case scenario. In the
worst-case scenario, N superfluous tags and/or values are
read out before the cache controller determines that the
value is not to be found in cache and performs a cache fill.

An improvement on this method can be realized by
allowing the DAG or cache controller to first determine
which way is most likely to have the desired value. If the
value is found in that way, then no superfluous values are
read from cache. If the determination is wrong, then at worst
the processor must perform the prior method, reading all N
words out, and/or performing a cache fill if the value is not
found.

Because memory is often read sequentially, such as in
arrays or other related data sets, the previous successful way
hit provides a first-order “best guess™ to the appropriate way
where a next value is to be found. For example, if register
R1 is in a “no hit” state (meaning that it has no previous
successful way hit), it will read out all N ways to see if it can
find the value in cache, and/or perform a cache fill to fetch
the value into cache. Once the value has been successfully
located in way W, the N-1 superfluous words are disre-
garded. On the next read cycle that includes a read from R1,
however, the processor may first look for the desired value
in way W, rather than loading all N ways. As long as the
processor designer is confident that way W will contain the
desired value a non-trivial fraction of times, substantial
power and cost savings may be realized.

To further refine the method, the processor may also know
when it has a “known unknown.” When the address register
R1 has changed to an unknown address, for example, it may
now correspond to a different cache line and the value of
“guessing” way W is substantially reduced, making it little
better, or perhaps even worse, than a random guess. Thus, in
that case, it may be better to read all N ways and discard the
N-1 superfluous values. Another example is offset address-
ing or post-incrementing, where a base address is either
offset or incremented to a value past the terminal of the
present cache line. In that case, the next value may not be
found in cache, or at least there is no reason to suppose it will
be found in way W.

Turning now to the appended drawings, FIG. 1 is a
schematic block diagram of an example digital signal pro-
cessor (DSP) core 100 according to one or more examples
of'the present Specification. It should be noted that DSP core
100 is provided as one non-limiting example of a type of
processor, and the term “processor” as used throughout this
Specification is intended to broadly encompass any combi-
nation of hardware, software, or firmware providing pro-
grammable logic, including by way of non-limiting example
a microprocessor, digital signal processor, field-program-
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4

mable gate array, programmable logic array, application-
specific integrated circuit, or virtual machine processor. DSP
core 100 may form part of a larger “computing device,”
which in various embodiments may include or be part of, by
way of non-limiting example, a computer, embedded com-
puter, embedded controller, embedded sensor, personal digi-
tal assistant (PDA), laptop computer, cellular telephone, IP
telephone, smart phone, tablet computer, handheld calcula-
tor, or any other electronic, microelectronic, or microelec-
tromechanical device for processing and communicating
data. FIG. 1 has been simplified for the sake of clarity and
to better understand the novel concepts of the present
disclosure. Thus, additional features may be added in DSP
core 100, and some of the features described below may be
replaced or eliminated in other embodiments of DSP core
100.

DSP core 100 may include a control unit 110, a cache 120,
memory 122, and a compute array 130. In an example,
control unit 110 and compute array 130 constitute a core
processor that can perform computation and data processing
functions of DSP core 100. Some embodiments of DSP core
100 include other components, such as a microcontroller for
executing microcontroller instructions, a direct memory
access (DMA) unit, and various interfaces to off-chip
devices. Further, although memory 122 is shown here as a
single logical block with cache 120 disposed between
memory 122 and register files 154, it should be recognized
that memory 122 may in various embodiments include
system main memory, various levels of on-chip or local
memory, cache, and/or other volatile or non-volatile
memory technologies.

Control unit 110 facilitates program execution of DSP
core 100. Control unit 110 may include an arithmetic logic
unit and data address generation (ALU-DAG) unit 112, a
program sequencer 114, and a local program memory 116.
Control unit 110 may also include other components, such as
an instruction cache, a timer, and an instruction register. In
an example, ALU-DAG unit 112 supports general purpose
integer computations and supplies memory addresses. For
example, ALU-DAG 112 provides memory addresses when
data are transferred between memory 122 and registers (such
as register files of compute array 130, described below).
ALU-DAG unit 112 can supply addresses to data memory
(for example, memory 122) and/or program memory 116.
Program sequencer 114 provides instruction addresses to
program memory 116 for instruction fetches. Program
memory 116 stores programs that DSP core 100 implements
to process data (such as data stored in memory 122) and can
also store process data. “Programs,” as used throughout this
Specification, include any ordered set of executable instruc-
tions operable to instruct a processor, such as DSP core 100,
to perform a specified task. DSP core 100 may implement
programs by fetching the instructions, for example by
retrieving them from memory 122 and loading them into
program sequencer 114, decoding the instructions, and pro-
viding the decoded instructions to processing elements PE
for execution, or executing them locally in ALU-DAG unit
112. In an example, programs may include instruction sets
for implementing various DSP algorithms, including algo-
rithms that may be performed in parallel by executing them
across two or more processing elements PE, or in single-
instruction-multiple-data (SIMD) mode, in which two or
more processing elements execute the same instruction, as
received from program sequencer 114, on different data
elements. SIMD is commonly used, for example, for expe-
ditious processing of large data arrays by dividing the array
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into n subarrays, and then allowing n processing elements to
separately process one subarray each.

Memory 122 stores data to be processed by DSP core 100
(data memory), programs implemented by DSP core 100 to
process the data (program memory), or a combination
thereof. In some examples, memory 122 may have a multi-
banked interleaved memory structure, such that memory 122
includes memory banks M1-Mn, where n is a total number
of memory banks of memory 122. In an example, memory
122 is a random access memory, such as a static random-
access memory (SRAM), dynamic RAM (DRAM), read-
only memory (ROM), flash memory, or other suitable
memory technology. In an example, one or more memory
banks M are a separate RAM. Alternatively, memory 122
may represent a multi-tiered memory structure, including for
example a fast L1 memory, an intermediate .2 memory, and
a slow main memory, wherein the size and cost of each
memory may vary inversely with the access speed of the
memory. In yet another example, memory 122 may include
a cache, or any other suitable type of memory. In some cases,
a direct memory access (DMA) controller may also be
provided to enable DMA operations from DSP core 100 to
memory 122.

By way of example, three buses 170 are shown. As used
throughout this Specification, a “bus” includes any inter-
connection line, network, connection, bundle, single bus,
multiple buses, crossbar network, single-stage network,
multistage network or other conduction medium operable to
carry data between parts of a computing device, or between
computing devices. Where necessary or appropriate, buses
170 may also include appropriate controllers, such as a
memory management unit (MMU) or similar. In this
example, a main system bus 170-1 is provided to commu-
nicatively couple DSP core 100 to other system components,
as discussed by way of more detailed example in FIG. 2.
Computational bus 170-2 communicatively couples com-
pute array 130 to control unit 110. Memory bus 170-3
communicatively couples processing elements PE to
memory 122. It should be noted that these uses are disclosed
by way of non-limiting example only, and that some
embodiments may omit one or more of the foregoing buses,
while others may employ additional or different buses.

Control unit 110 may issue instructions and data addresses
to compute array 130 via computational bus 170-2. Com-
putational bus 170-2 transfers addresses for instructions and
data to various processing elements PE of compute array
130. Memory bus 170-3 may transfer data and/or instruc-
tions from memory (such as memory 122, program memory
116, other memory, or a combination thereof), such that
contents of any register in DSP core 100 can be transferred
to any other register or to any memory location and memory
122 can provide data operands (values) to compute array
130.

In the example shown, compute array 130 includes four
processing elements PE1-PE4. In other embodiments, com-
pute array 130 may include zero or more discrete processing
elements. Processing elements PE perform numeric process-
ing, and in an example may include specialized hardware for
carrying out specific types of computations such as DSP
algorithms. Processing elements PE may operate indepen-
dently, in parallel, or as a SIMD engine. In the present
example, each processing element PE may be a vector
processor. Alternatively, processing elements PE may be
scalar processors, or a combination of scalar processors and
vector processors.

Processing elements PE each include a respective com-
putation unit (CU) 152. In the depicted embodiment, com-
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6

putation units 152 may be identical, although the present
disclosure contemplates embodiments where computation
units 152 are not identical. The present disclosure further
contemplates configurations where one or more processing
elements PE do not include a computation unit 152. In the
present example, computation units 152 each include an
arithmetic logic unit (ALU), a multiplier-accumulator
(MACQ), a shifter, other computational unit, or combinations
thereof. An ALU can perform arithmetic and logic opera-
tions, such as add, subtract, negate, increment, decrement,
absolute value, AND, OR, EXCLUSIVE OR, NOT, divide
primitive, other arithmetic operations, other logic opera-
tions, or combinations thereof. An example MAC can per-
form multiplication operations as well as multiply and
accumulate operations, such as single-cycle multiply, mul-
tiply/add, multiply/subtract, other operations, or combina-
tions thereof. A shifter can perform logical and arithmetic
shifts, bit manipulations, normalization, denormalization,
derive-exponent operations, other operations, or combina-
tions thereof. The various arithmetic operations, logic opera-
tions, and other operations can be performed on both fixed-
point and floating-point formats. In various embodiments,
the ALU, MAC, and/or shifter include registers associated
therewith.

Processing elements PE may also each include a respec-
tive register file 154. In the depicted embodiment, register
files 154 may be identical, although the present disclosure
contemplates embodiments where register files 154 are not
identical. The present disclosure further contemplates con-
figurations where one or more processing elements PE do
not include a register file 154. Register files 154 include
registers that transfer data between processing elements PE
and memory bus 170-3 and stores results. In the present
example, register files 154 can include a respective general
purpose register set 155 that include general purpose regis-
ters having widths dependent on design requirements of
DSP core 100, such as 32-bit general purpose registers,
40-bit general purpose registers, 64-bit general purpose
registers, 128-bit general purpose registers, other width
general purpose registers, or a combination thereof. For
purposes of the following discussion, general purpose reg-
isters 155 include 32-bit general purpose registers. In the
present example, register files 154 each include both gen-
eral-purpose registers 155 and special registers 158, which
may include any registers needed for carrying out way
prediction as described herein. Depending on context, in
certain architectures any general purpose register 155 or
special register 158 may be used as any of the purpose-
designated registers of FIG. 4, such as address register 410,
offset register 430, and data register 480. In other examples,
certain registers within special registers 158 may be spe-
cially designated as one or more address registers 410, offset
registers 430, and/or data registers 480.

DSP core 100 can perform various parallel operations. For
example, during a single cycle, processing elements PE may
access an instruction (via interconnection network 142) and
access N data operands from memory (via memory bus
170-3) for synchronous processing. In SIMD mode, DSP
core 100 may process multiple data streams in parallel. For
example, when in SIMD mode, DSP core 100 in a single
cycle may dispatch a single instruction to each or a plurality
of processing elements PE via computational bus 170-2;
load N data sets from memory (memory 122, program
memory 116, other memory, or a combination thereof) via
memory bus 170-3, one data set for each processing element
PE (in an example, each data set may include two data
operands); execute the single instruction synchronously in
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processing elements PE; and store data results from the
synchronous execution in memory 122.

FIG. 2 is a block diagram of a computing device 200
according to one or more examples of the present Specifi-
cation. As described with reference to FIG. 1, computing
device 200 includes a DSP core 100 communicatively
coupled to a system bus 170-1 and a memory bus 170-3.
Memory bus 170-3 communicatively couples DSP core 100
to memory 122, which has loaded therein an operating
system 122 providing low-level services for application
software. This Specification contemplates, however,
embodiments wherein a traditional operating system 122
may be unnecessary, such as in embedded systems or
controllers, wherein applications may run on “bare metal.”

A storage 240 may communicatively couple to DSP core
100 via system bus 170-1. Storage 240 may be a species of
memory 122. In some embodiments, memory 122 and
storage 240 may be separate devices, with memory 122
being a relatively low-latency volatile memory device, and
storage 240 being a relatively high-latency non-volatile
memory device. Storage 240 may also be another device,
such as a hard drive, solid-state drive, external storage,
redundant array of independent disks (RAID), network-
attached storage, optical storage, tape drive, backup system,
cloud storage, or any combination of the foregoing. Storage
240 may be, or may include therein, a database or databases
or data stored in other configurations. Many other configu-
rations are also possible, and are intended to be encom-
passed within the broad scope of this Specification. In an
example, program execution involves loading instructions
from storage 240 into memory 122. Instructions are then
fetched into DSP core 100 for execution. Data may also be
loaded from storage 240 into memory 122 for availability to
DSP core 100 during program execution.

A network interface 270 may communicatively couple to
DSP core 100, and may be operable to communicatively
couple DSP core 100 to a network. In this Specification, a
“network” includes any communicative platform operable to
exchange data or information within or between computing
devices, including by way of non-limiting example, an
ad-hoc local network, an internet architecture providing
computing devices with the ability to electronically interact,
a plain old telephone system (POTS), which computing
devices could use to perform transactions in which they may
be assisted by human operators or in which they may
manually key data into a telephone or other suitable elec-
tronic equipment, any packet data network (PDN) offering a
communications interface or exchange between any two
nodes in a system, or any local area network (LAN),
metropolitan area network (MAN), wide area network
(WAN), wireless local area network (WLAN), virtual pri-
vate network (VPN), intranet, or any other appropriate
architecture or system that facilitates communications in a
network or telephonic environment.

A peripheral interface 250 communicatively couples to
DSP core 100 via system bus 170-1, and may be operable to
communicatively couple DSP core 100 to one or more
peripherals. As used in this Specification, a “peripheral”
includes any auxiliary device that connects to computing
device 200 but that is not necessarily a part of the core
architecture of computing device 200. A peripheral may be
operable to provide extended functionality to computing
device 200, and may or may not be wholly dependent on
computing device 200. In some cases, a peripheral may be
a computing device in its own right. Peripherals may include
input and output devices such as displays, terminals, print-
ers, keyboards, mice, modems, network controllers, sensors,
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transducers, actuators, controllers, data acquisition buses,
cameras, microphones, speakers, or external storage by way
of non-limiting example.

Note that the components described in FIG. 2 are pro-
vided by way of example only, and are not intended to limit
computing device 200 to the particular configuration shown.
Any component of FIG. 2 may be omitted in appropriate
circumstances, while in other appropriate circumstances,
any component may be duplicated as necessary, or combined
with another component. For example, in some cases, net-
work interface 270 may be used to provide connectivity to
certain peripherals, so that the function of peripheral inter-
face 250 is subsumed therein. Thus, it should be understood
that the division between components herein is not intended
to imply a necessary or strict physical division. Rather,
components are divided according to logical functions, and
where appropriate, a single device may perform a plurality
of functions. In one example, computing device 200 may be
provided, in its entirety, as a system-on-a-chip (SoC),
wherein some or all of the functions disclosed herein may be
provided in a single monolithic semiconductor device.

FIGS. 3A and 3B are block diagrams of a cache according
to one or more examples of the present Specification. In FIG.
3A a direct-mapped cache 120-1 is disclosed. Cache con-
troller 310 is provided to address direct-mapped cache
120-1. Cache controller 310 receives an address for a
memory location to access, and uses the address to access
direct-mapped cache 120-1.

In this example, direct mapped cache 120-1 includes a
number of bits, bytes, characters, words, or other divisions
of memory appropriate to the application. Throughout this
Specification, words are used by way of non-limiting
example to illustrate the methods and structures disclosed
herein. It should be understood, however, that any reference
to a data “word” read out of cache 120 or memory 122 is
intended to broadly encompass any suitable memory ele-
ment or division.

Direct mapped cache (which can be thought of as com-
prising a number of sets which consist of only a single way
each) 120-1 includes eight separate sets in this example.
Each cache set is configured so that each value from main
memory 122 may be mapped into only one set. This may be
based, for example, on a portion of the least bits of the
address from memory 122. It should be noted that this is
provided by way of example only, and that there are numer-
ous methods in which memory can be addressed and man-
aged in a cache subsystem 300. In this example, memory
addresses are mapped based on a value from 0 to 7, which
may be encoded in the bits 3 through 5 of the address in
RAM. Thus, index 0x0 and index 0x40 can only be stored
in set 0, index 0x8 and index 0x48 can only be stored in set
1, index 0x10 and index 0x50 can only be stored in set 2, and
so forth.

While this configuration has advantages in speed and
complexity, it faces some limitations in storage flexibility.
For example, if a program is written in such a way that it
needs to access index 0x0 and index 0x40 in turn repeatedly,
then on each load instruction, the cache will be filled on the
very next read, a cache miss will occur, because index 0x40
will not and cannot be stored in direct mapped cache 120-1
at the same time as index 0x0. Thus, set 0 will have to be
flushed and filled from cache on each iteration. On the next
read the cache-miss-and-flush cycle will repeat. This will
continue through each iteration of the memory needing to
access both index 0x0 and index 0x40. This may result in
significant processing delays, because each memory access
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will have to retrieve the value from memory 122 instead of
directly from direct mapped cache 120-1. This may be
referred to as “thrashing.”

Thrashing can be avoided by writing a program so that it
does not simultaneously or consecutively access index 0x0
and 0x40 in this manner. However, at design time or compile
time, a program designer may not know which specific index
locations a program will need to access. In other cases, a
designer may be writing a program to be portable across a
plurality of processor architectures, and thus may not know
in advance the size and type of cache that may be provided.
Even with a good optimizing compiler, it is not always
possible to know beforehand whether thrashing or other
sub-optimal behavior will occur. Thus, it is advantageous to
design a processor and system wherein thrashing can be
minimized by providing additional flexibility within cache
120.

FIG. 3B discloses an example in which additional flex-
ibility is provided for cache 120 by providing additional
ways. In this example, cache controller 310 generates an
address and retrieves that value from four-way cache 120-2.
Four-way cache 120-2 is somewhat more complex then
direct mapped cache 120-1, in that it is configured so that
each location and memory may be provided in any of four
locations within four-way cache 120-2. For example,
memory indexes 0x0 and 0x40 may be found in any of the
four ways of set 0, memory indexes 0x8 and 0x48 may be
found in any of the four ways of set 1, memory indexes 0x10
and 0x50 may be found in any of the four ways of set 2, and
so on. Note that 4-way cache 120-2 includes sets 3-6, which
are not shown to simplify the drawing. For purposes of
discussion, it can be assumed that 4-way cache 120-2 is a
4-way, 8-set cache with an 8-word cache line size.

Thus, in this example, if a program needs to alternately
access index 0x0 and index 0x40, index 0x0 may be loaded
into Set 0, Way 0, while index 0x40 may be loaded into Set
0, Way 1. Thus, on the first cycle, cache controller 310 may
address four-way cache 120-2 to find index 0xO0 stored in Set
0, Way 0. This represents a cache hit. On the next cycle,
cache controller 310 may address 4-way cache 120-2 and
find index 0x40 stored in Set 0, Way 1, also a cache hit. On
the next several cycles each access to locations 0x0 and 0x40
in turn result in a cache hit. Thus, no cache misses and
expensive cache fills are required.

The operation of 4-way cache, however, comes at a cost.
Because index 0x0 may be found in any of the ways of set
0, the cache controller 310 does not know beforehand
whether index 0x0 is located in Way 0, Way 1, Way 2, or
Way 3.

For increased speed, cache controller 310 may access all
four ways to determine whether the desired value is in one
of them. If the desired value is not found in any of the ways,
then cache controller 310 performs a cache fill from memory
122. In the best case scenario if the value is found in one of
those locations, then four values will be read from 4-way
cache 120-2, and only one of them will be the desired value.
The other three will be disregarded. Because a properly
operating processor will access 4-way cache 120-2 on
almost every cycle, this means that, at best, three extra read
operations will be performed on each cycle, with the result
of those three extra reads being disregarded. Although this
is a relatively fast solution, inasmuch as cache reads are
extremely fast, in some embodiments, it does result in cache
controller 310 drawing additional unnecessary power.

Substantial power savings may be realized if cache con-
troller 310 can predict in advance which way W is most
likely to hold the desired value within 4-way cache 120-2.
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In that case, cache controller 310 can read only the most
likely value from 4-way cache 120-2. If W proves to be the
right way, then the read has been successful without needing
to retrieve extra, unnecessary information. If W is not the
right way, then the other ways will need to be checked. In an
example, cache controller 310 may initiate a cache fill first.
While the cache fill is pending, cache controller 310 may
check all four ways of 4-way cache 120-2 to see if the
desired value is anywhere in cache. Although this is rela-
tively unlikely, the check may be necessary to ensure that
two copies of the same memory location do not end up in
4-way cache 120-2. If the value is found in 4-way cache
120-2, then the pending cache fill may be aborted.

FIG. 4 is an expanded block diagram of a combined DAG
and cache controller 310 according to one or more examples
of the present Specification. The DAG accesses one or more
address registers 410, each of which include way bits 412.
Offset register 430 is provided, along with an adder 420,
process selection logic 440, comparators 442, tag RAM
banks 460, data RAM banks 480, selection logic 450, and
data registers 490. It will be noted that certain of the
elements disclosed within cache controller 310 in FIG. 4 are
disclosed in other views in other FIGURES. Thus, it should
be recognized that FIG. 4 does not disclose necessarily a
required physical configuration of the disclose elements, but
rather discloses a functional arrangement. It should also be
noted that address register 410, offset register 430, and data
register 490 may, in some cases, be any suitable register,
such as a general purpose register 155. The designation of
these as purpose-designated registers is provided merely by
way of illustration. A primary purpose of cache controller
310 is to load into data register 490 a value from memory
whose address is provided by address register 410, or whose
address is provided by address register 410 plus offset
register 430. Address register 410 may be post-incremented,
meaning that after address register 410 is used to address a
memory location, it is incremented by a second value. This
type of addressing may be useful, for example, in iterating
through a loop or other structure where it is useful to address
a sequence of memory elements in order.

In an example, address register 410 may include a base
address or an absolute address. Address register 410 may
provide its base address to adder 420, and offset register 430
may provide an offset value for offset addressing modes. In
this example, offset-style addressing may be employed, for
example in a linear array, where it is most logical to address
the array in terms of the base address plus an offset. In
post-increment addressing, adder 420 may increment the
address and provide the incremented value back to address
register 410. In other addressing modes, address register 410
may provide an address directly.

The result of an add operation or post-increment may be
used to predict whether the next value is likely to be found
in cache, by determining whether the new address is within
the present cache line. For example, if register R2 contains
the value 0x6, and if addresses 0x0-0x7 are presently in a
cache line, then the pseudoinstruction “LD R1, @(R2+5),”
(“load the value at address R2+5 into register R1”) is
unlikely to be in cache, as R2+0x5=0xB, which is outside
the present cache line. Thus, attempting to use the last way
W as a “best guess” for the next address may be unlikely to
succeed.

However, in certain embodiments, adder 420 may create
an unacceptably long delay to the clock cycle length if a
full-width addition must be completed before a decision can
be made on whether the new address is likely to be in the
cache line. In that case, only a portion of the least significant



US 9,460,016 B2

11

bits may be used for the cache prediction. For example, with
a 32-bit address width, the most significant bits are not likely
to be predictive, because they will only change if an array is
millions of words long. While not impossible, this case is
rare, so waiting for the upper 16 bits (for example) of the add
operation may yield little useful information in exchange for
a very long delay. Similarly, the least significant few bits—
such as the bottom three bits that correspond to a particular
set of an 8-set cache—are also not useful, as they are not
used to distinguish between different cache lines. However,
the next several bits may be highly predictive of whether the
present add operation will exceed the cache line. For
example, assuming that bits 0-2 of the address contain only
information on where the value resides within a cache line,
the next eight bits (3-10) are exactly predictive of whether
the cache line has been exceeded for any pair of addresses
that differ by up to 2047 (corresponding to array jumps of
2047 words, for example). In other words, if one of those
bits changes, then the present cache line has been exceeded
and a cache fill may be necessary, while if the bits stay the
same, the new address is likely to be in the cache line.

This prediction will fail in some cases where the new
address is more than 2047 words from the old address. In
that case, cache controller 310 may make an erroneous
prediction. However, the cost of an erroneous prediction is
merely a possibly failed attempt to read from way W. In one
example, the number of bits to use for the prediction are
selected to be the maximum number of bits that can be
provided without extending the length of the processor’s
existing clock cycle.

Selection logic 440 receives a selection signal, for
example from the instruction performing the read or write
operation, indicating whether the address from address reg-
ister 410 should be used directly, or whether offset register
430 should be applied. Selection logic 440 provides an
address to get RAM banks 480, and also may provide the
address back to RAM banks 460. When the address is
selected, DRAM bank 480 provides data values to selection
logic 450, while comparators 442 are used to select which
value from data RAM bank 480 is to be provided to the
register 155 that requested the data value.

Way bits 412 of address register 410 may provide bank
enable signals 470 to both tag banks 460 and data RAM
banks 480. In one example, a Y-way cache may include Y
way bits, so that each way bit is capable of providing an
enable signal to its corresponding way. In other examples, 2"
ways may be encoded in n way bits, and additional logic
may provide a selection signal. Way bits 412 are used to
select a particular bank from tag banks 460 and data banks
480. Thus, in a case where a particular way provided a
successful data read on a previous instruction which used the
same address register, way bits 412 will store that way, and
use it to enable banks 460 and 480. Additional bits may be
provided for “no hit” and “wait for way” flags.

When proceeding to the next address location, several
addressing modes may be used. For example, address reg-
ister 410 may be set to an unrelated address, or a post
increment from adder 420 may be provided to address
register 410, so that the next address refers to a subsequent
element of the array, or field of a structure.

Thus, in certain embodiments, the different banks of data
RAM banks 480 represent a plurality of ways. Only one of
these ways returns a value, based on the selection from
comparator 442. Comparator 442 is controlled in some cases
by way bits 412, which represent the last successful read
operation from cache 120 from address register 410. How-
ever, as seen in the Specification, additional logic may be
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provided for cases where the last successful cache way is not
expected to be the correct cache way.

FIGS. 5A-5F are flow diagrams of methods performed by
DSP 100 according to one or more examples of the present
Specification. FIGS. 5A-5E together disclose particularly a
method of setting status flags of way bits 412.

FIG. 5A discloses method 501. In block 510, DSP 100
executes the pseudoinstruction “LD R1, <addr>.”. In this
example, register R1 acts as data register 490, and no other
registers are involved. This notation indicates that a value is
loaded from memory 122 into register R1. Because the value
of R1 was loaded from memory, we do not know where this
value may point to in memory, and therefore there is no
previous way to use for future predictions of which way the
data is likely to reside in when we access the data pointed at
by the value in R1.

Each register may include way bits 412. In this case,
register R1’s NH (“no hit”) bits have been set, which
indicates that there is insufficient information to provide a
useful best guess of which way to access for any future
dereference of the address in R1. In block 512, R1,,, is set
to 1.

In block 519, method 501 is done.

FIG. 5B discloses example method 502. In block 520,
DSP 100 executes the pseudoinstruction “MOV R1, R2,”
meaning copy the contents of register R2 into register R1. In
this case, no offset register 430 is used. This may be
performed, for example, when register R2 was previously
used as address register 410, and register R1 is now to be
used as address register 410. In that case, the way bits for R2
are predictive for R1. Furthermore, even if R2 has been used
as a data register 490, no harm is done by copying the way
bits, so there may be no need to determine what role R2 has
filled before copying the way bits.

In block 522, R2,,,,=R1,,,,,, meaning the way bits from
register R2 are copied into register R1’s way bits.

In block 529, method 502 is done.

FIG. 5C discloses example method 503. In example
method 503, an addition operation is performed. In this case,
register R2 is used as address register 410, while a variable
i is a constant in the instruction opcode or is provided by
offset register 430. R1 acts as a second address register 410.
Thus, R1 is assigned the value R2+i.

In block 530, DSP 100 executes pseudoinstruction MOV
R1, (R2+).

In block 532, a check is performed whether the value
R2+i is within the current cache line. If it is, then in block
534, way bits from R2 are copied to the way bits from R1,
because the way bits of R2 are a good predictor of the way
in which the data pointed to by R1 will reside.

In block 536, if R2+i is not within the present cache line,
then R1,,, is set to true.

In block 529, method 503 is done.

FIG. 5D is a block diagram of a method 504. Method 504
represents a post-increment load operation, wherein R2 acts
as data register 490 and R1 acts as address register 410.
Throughout this specification the notation “@” indicates
“memory location pointed to by what follows.” After a value
has been loaded from @R1, R1 is incremented (by some
value). This is illustrated in FIG. 4, as adder 420 feeds back
to address register 410.

In block 540, the pseudo-code instruction “LD R2,
@(R1+4=1) is executed. Again, variable i is a constant in the
instruction opcode or is provided by offset register 430. This
means that register R1 contains an address of a value to be
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loaded into register R2. After register R1 is used, it is
incremented by i so that it points to another memory location
in a memory structure.

In block 542, a check is performed whether the value of
R1+i is within the present cache line. In block 544, if it is,
then R1,;,; is maintained in its present form, and method
505 of FIG. 5E may also be performed.

In block 546, if R1+i is not within the present cache line,
then R1,,, is set to 1. This is because cache controller 310
does not know in which way, if any, the next value pointed
to by R1 is likely to reside.

In block 549, the method is done.

FIG. 5E is a flow diagram of method 505 according to one
or more examples of the present Specification. In this case,
R1 is used as address register 410, and R2 is used as data
register 490.

In block 550, DSP 100 executes the pseudoinstruction
“LD R2, @R1,” meaning that the value pointed to by R1 is
loaded into R2. In block 552, there is a check whether R1,,,
is set. If it is not, then in block 554, cache controller 310
reads the value from R1,,,;, meaning that way bits of
register R1 are used to select which way to try from cache
120.

It R1,,, is set, then in block 560, there is a check whether
R1’s “wait for way” (WFW) flag is set. This flag is provided
to ensure that when the cache way for the access is deter-
mined, that the register way bits are updated only if the
register has not changed to an unrelated value in the mean-
time.

In block 562, the way bits of register R1 will receive the
variable W, meaning the value of the last successful way hit.
In in block 556, if R1 ;.5 1s not set, then in block 556, then
R1 4 1s set to 1. R2,,, may also be set to 1, since the last
value was loaded from main memory 122.

In block 569, the method is done.

FIG. 5F is a flow diagram of a method 507 according to
one or more examples of the present Specification. Method
507 illustrates manipulation of WFW bits when accessing
(R1+1). Note that in certain examples, method 505 of FIG.
5E may be considered a special case of method 507, where
i==0.

In block 570, DSP 100 executes the pseudoinstruction
“LD R2, @(R1+i),” meaning that the value pointed to by
R1+i should be loaded into register R2.

In block 572, there is a check whether R1+i is within the
present cache line. If it is not, then control passes to block
579, and method 507 is done.

Returning to block 572, if it is in the present cache line,
then in block 574, there is a check whether R1,,~=1. If it
does not, then in block 575, the value is read from R1;,,,,
and in block 579, the method is done.

Otherwise, in block 576, there is a check whether
R1,zp==1. If 50, then in block 577, R1,,,,, is set to W, and
in block 579, method 507 is done.

If not, then in block 578, R1,,;-1s set to 1, and in block
579, the method is done.

FIGS. 6A and 6B are flow diagrams of example methods
of setting the W variable according to one or more examples
of the present Specification.

FIG. 6A discloses method 600.

In block 610, DSP 100 performs the pseudocode opera-
tion “LD R2, @(R1+=1)". In this case, R1 is address register
410, pointing to a value to be loaded into R2, which is data
register 490. After being used to address the value, R1 is post
incremented by variable i.

In block 612, the variable W is set to the substantive (i.e.,
non-flag) portion of way bits 412 of R1, or R1,,,-
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In block 619 the method is done.

FIG. 6B discloses method 601. In this case, offset-based
addressing is used. That means that register R2 will be
loaded with the value pointed to by an address computed by
R1+, in which i is an offset from the base address.

In block 630, DSP 100 performs the pseudocode opera-
tion “LD R2, @(R1+i).”

In block 632, there is a check whether R1+1 is within the
present cache line. In block 636, if it is not within the present
cache line, then W is set to no-hit. In block 634, if R1+i is
within the present cache line, and W is set to the way bits of
register R1.

In block 639, the method is done.

FIGS. 7A and 7B disclose example methods of accessing
a value from a predicted way (i.e. when W is not no-hit)
according to one or more examples of the present Specifi-
cation.

FIG. 7A discloses method 700. In block 710, when a
memory access operation is performed, such as those dis-
closed in the previous FIGURES, cache controller 310 first
looks to see if the requested value is in way W of cache 120.

In block 720, there is a check whether the memory access
was successful, meaning that cache controller found the
requested value in way W. If the memory access from way
was successful, then in block 790 the method is done. This
path represents an optimal operating condition, in which the
value of W is set and is valid, and in which it correctly
predicts which way to access the value from. This means that
no extra steps are required, and no unnecessary read opera-
tions are performed from the other ways of cache 120.

Following the path from block 720 to block 730, if the
access was not successful, then cache controller 730 may
initiate a cache fill.

In block 740, cache controller 740 may check remaining
ways to see if the value is in one of the other ways.

In block 760, there is a check whether the value was
successfully found in any of the other ways.

In block 762, if the value was found in one of the other
ways, then in block 762 the cache fill is aborted. Then in
block 770, W is updated with the new value.

In block 750, if the check of remaining ways was not
successful, then cache controller 310 waits for the cache fill
initiated in block 730 to finish. Then in block 770, W is
updated with the way that the value was loaded into during
the cache fill.

Note that in some embodiments, the cache fill of 730 may
not be initiated automatically after block 720. Rather, the
check of block 740 may be performed first, and the cache fill
of block 730 may be performed only in the “NO” branch of
block 760. In those embodiments, block 762 may be unnec-
essary. The choice of which embodiment may be driven by
design considerations in specific applications. In some cases,
a user- or firmware-controllable variable may be provided so
that both methods may be provided as options.

In block 790, the method is done.

FIG. 7B discloses method 702. FIG. 7B is executed when
it is known that there is no prediction of a best possible way,
such as what the W variable is set to. Thus, in block 712,
W=NH.

In block 722, the values from all ways where the desired
data may be are loaded. In block 732, if the requested value
was found, then no cache fill is necessary. In block 742, if
the value was not found in any of the possible ways, then the
value is not in cache and a cache fill is necessary.

Inblock 770, W is updated with the way that the requested
value was loaded into during the cache fill of block 742, and
in block 792, the method is done.
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In the “YES” branch of block 732, the requested value is
found in cache. In block 752, the correct value is chosen,
while the other values are ignored. In block 770, W is
updated with the way where the requested value was found.

In block 792, the method is done.

Note that the activities discussed above with reference to
the FIGURES are applicable to any integrated circuits that
involve signal processing (for example, gesture signal pro-
cessing), particularly those that can execute specialized
software programs or algorithms, some of which may be
associated with processing digitized real-time data. Certain
embodiments can relate to multi-DSP signal processing,
floating point processing, signal/control processing, fixed-
function processing, microcontroller applications, etc. In
certain contexts, the features discussed herein can be appli-
cable to medical systems, scientific instrumentation, wire-
less and wired communications, radar, industrial process
control, audio and video equipment, current sensing, instru-
mentation (which can be highly precise), and other digital-
processing-based systems. Moreover, certain embodiments
discussed above can be provisioned in digital signal pro-
cessing technologies for medical imaging, patient monitor-
ing, medical instrumentation, and home healthcare. This
could include pulmonary monitors, accelerometers, heart
rate monitors, pacemakers, etc. Other applications can
involve automotive technologies for safety systems (e.g.,
stability control systems, driver assistance systems, braking
systems, infotainment and interior applications of any kind).
Furthermore, powertrain systems (for example, in hybrid
and electric vehicles) can use high-precision data conversion
products in battery monitoring, control systems, reporting
controls, maintenance activities, etc. In yet other example
scenarios, the teachings of the present disclosure can be
applicable in the industrial markets that include process
control systems that help drive productivity, energy effi-
ciency, and reliability. In consumer applications, the teach-
ings of the signal processing circuits discussed above can be
used for image processing, auto focus, and image stabiliza-
tion (e.g., for digital still cameras, camcorders, etc.). Other
consumer applications can include audio and video proces-
sors for home theater systems, DVD recorders, and high-
definition televisions. Yet other consumer applications can
involve advanced touch screen controllers (e.g., for any type
of portable media device). Hence, such technologies could
readily be part of smartphones, tablets, security systems,
PCs, gaming technologies, virtual reality, simulation train-
ing, etc.

The foregoing outlines features of several embodiments
so that those skilled in the art may better understand the
aspects of the present disclosure. Those skilled in the art
should appreciate that they may readily use the present
disclosure as a basis for designing or modifying other
processes and structures for carrying out the same purposes
and/or achieving the same advantages of the embodiments
introduced herein. Those skilled in the art should also realize
that such equivalent constructions do not depart from the
spirit and scope of the present disclosure, and that they may
make various changes, substitutions, and alterations herein
without departing from the spirit and scope of the present
disclosure.

The particular embodiments of the present disclosure may
readily include a system on chip (SOC) central processing
unit (CPU) package. An SOC represents an integrated circuit
(IC) that integrates components of a computer or other
electronic system into a single chip. It may contain digital,
analog, mixed-signal, and radio frequency functions: all of
which may be provided on a single chip substrate. Other
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embodiments may include a multi-chip-module (MCM),
with a plurality of chips located within a single electronic
package and configured to interact closely with each other
through the electronic package. In various other embodi-
ments, the digital signal processing functionalities may be
implemented in one or more silicon cores in Application
Specific Integrated Circuits (ASICs), Field Programmable
Gate Arrays (FPGAs), and other semiconductor chips.

In example implementations, at least some portions of the
processing activities outlined herein may also be imple-
mented in software. In some embodiments, one or more of
these features may be implemented in hardware provided
external to the elements of the disclosed FIGURES, or
consolidated in any appropriate manner to achieve the
intended functionality. The various components may include
software (or reciprocating software) that can coordinate in
order to achieve the operations as outlined herein. In still
other embodiments, these elements may include any suitable
algorithms, hardware, software, components, modules,
interfaces, or objects that facilitate the operations thereof.

Additionally, some of the components associated with
described microprocessors may be removed, or otherwise
consolidated. In a general sense, the arrangements depicted
in the FIGURES may be more logical in their representa-
tions, whereas a physical architecture may include various
permutations, combinations, and/or hybrids of these ele-
ments. It is imperative to note that countless possible design
configurations can be used to achieve the operational objec-
tives outlined herein. Accordingly, the associated infrastruc-
ture has a myriad of substitute arrangements, design choices,
device possibilities, hardware configurations, software
implementations, equipment options, etc.

Any suitably-configured processor component can
execute any type of instructions associated with the data to
achieve the operations detailed herein. Any processor dis-
closed herein could transform an element or an article (for
example, data) from one state or thing to another state or
thing. In another example, some activities outlined herein
may be implemented with fixed logic or programmable logic
(for example, software and/or computer instructions
executed by a processor) and the elements identified herein
could be some type of a programmable processor, program-
mable digital logic (for example, a field programmable gate
array (FPGA), an erasable programmable read only memory
(EPROM), an electrically erasable programmable read only
memory (EEPROM)), an ASIC that includes digital logic,
software, code, electronic instructions, flash memory, opti-
cal disks, CD-ROMs, DVD ROMSs, magnetic or optical
cards, other types of machine-readable mediums suitable for
storing electronic instructions, or any suitable combination
thereof. In operation, processors may store information in
any suitable type of non-transitory storage medium (for
example, random access memory (RAM), read only memory
(ROM), field programmable gate array (FPGA), erasable
programmable read only memory (EPROM), electrically
erasable programmable ROM (EEPROM), etc.), software,
hardware, or in any other suitable component, device, ele-
ment, or object where appropriate and based on particular
needs. Further, the information being tracked, sent, received,
or stored in a processor could be provided in any database,
register, table, cache, queue, control list, or storage structure,
based on particular needs and implementations, all of which
could be referenced in any suitable timeframe. Any of the
memory items discussed herein should be construed as being
encompassed within the broad term ‘memory.” Similarly,
any of the potential processing elements, modules, and
machines described herein should be construed as being
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encompassed within the broad term ‘microprocessor’ or
‘processor.” Furthermore, in various embodiments, the pro-
cessors, memories, network cards, buses, storage devices,
related peripherals, and other hardware elements described
herein may be realized by a processor, memory, and other
related devices configured by software or firmware to emu-
late or virtualize the functions of those hardware elements.

Computer program logic implementing all or part of the
functionality described herein is embodied in various forms,
including, but in no way limited to, a source code form, a
computer executable form, and various intermediate forms
(for example, forms generated by an assembler, compiler,
linker, or locator). In an example, source code includes a
series of computer program instructions implemented in
various programming languages, such as an object code, an
assembly language, or a high-level language such as
OpenCL, Fortran, C, C++, JAVA, or HTML for use with
various operating systems or operating environments. The
source code may define and use various data structures and
communication messages. The source code may be in a
computer executable form (e.g., via an interpreter), or the
source code may be converted (e.g., via a translator, assem-
bler, or compiler) into a computer executable form.

In the discussions of the embodiments above, the capaci-
tors, buffers, graphics elements, interconnect boards, clocks,
DDRs, camera sensors, dividers, inductors, resistors, ampli-
fiers, switches, digital core, transistors, and/or other com-
ponents can readily be replaced, substituted, or otherwise
modified in order to accommodate particular circuitry needs.
Moreover, it should be noted that the use of complementary
electronic devices, hardware, non-transitory software, etc.
offer an equally viable option for implementing the teach-
ings of the present disclosure.

In one example embodiment, any number of electrical
circuits of the FIGURES may be implemented on a board of
an associated electronic device. The board can be a general
circuit board that can hold various components of the
internal electronic system of the electronic device and,
further, provide connectors for other peripherals. More spe-
cifically, the board can provide the electrical connections by
which the other components of the system can communicate
electrically. Any suitable processors (inclusive of digital
signal processors, microprocessors, supporting chipsets,
etc.), memory elements, etc. can be suitably coupled to the
board based on particular configuration needs, processing
demands, computer designs, etc. Other components such as
external storage, additional sensors, controllers for audio/
video display, and peripheral devices may be attached to the
board as plug-in cards, via cables, or integrated into the
board itself. In another example embodiment, the electrical
circuits of the FIGURES may be implemented as stand-
alone modules (e.g., a device with associated components
and circuitry configured to perform a specific application or
function) or implemented as plug-in modules into applica-
tion specific hardware of electronic devices.

Note that with the numerous examples provided herein,
interaction may be described in terms of two, three, four, or
more electrical components. However, this has been done
for purposes of clarity and example only. It should be
appreciated that the system can be consolidated in any
suitable manner. Along similar design alternatives, any of
the illustrated components, modules, and elements of the
FIGURES may be combined in various possible configura-
tions, all of which are clearly within the broad scope of this
Specification. In certain cases, it may be easier to describe
one or more of the functionalities of a given set of flows by
only referencing a limited number of electrical elements. It
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should be appreciated that the electrical circuits of the
FIGURES and its teachings are readily scalable and can
accommodate a large number of components, as well as
more complicated/sophisticated arrangements and configu-
rations. Accordingly, the examples provided should not limit
the scope or inhibit the broad teachings of the electrical
circuits as potentially applied to a myriad of other architec-
tures.

Numerous other changes, substitutions, variations, altera-
tions, and modifications may be ascertained to one skilled in
the art and it is intended that the present disclosure encom-
pass all such changes, substitutions, variations, alterations,
and modifications as falling within the scope of the
appended claims. In order to assist the United States Patent
and Trademark Office (USPTO) and, additionally, any read-
ers of any patent issued on this application in interpreting the
claims appended hereto, Applicant wishes to note that the
Applicant: (a) does not intend any of the appended claims to
invoke paragraph six (6) of 35 U.S.C. section 112 as it exists
on the date of the filing hereof unless the words “means for”
or “steps for” are specifically used in the particular claims;
and (b) does not intend, by any statement in the specifica-
tion, to limit this disclosure in any way that is not otherwise
reflected in the appended claims.

What is claimed is:

1. A computing system comprising:

a processor;

a cache comprising N cache ways;

a register; and

circuitry and logic operational for instructing the proces-

sor to:

access a value from the cache comprising reading
values from a plurality of ways and keeping only the
value from a way W; and

encode W in way bits of the register.

2. The computing system of claim 1, wherein the register
comprises N way bits, a wait-for-way flag, and a no-hit flag.

3. The computing system of claim 1, wherein circuitry and
logic are further operational for instructing the processor to
check way W for a desired value without accessing any
additional ways in the cache.

4. The computing system of claim 1, further comprising
an adder, and wherein the circuitry and logic are further
operable to instruct the processor to:

search way W for the desired value only if the result of an

add operation in the adder indicates that the desired
value is within a present cache line.

5. The computing system of claim 4, wherein the result of
the add operation comprises only a portion of the full add
operation.

6. The computing system of claim 4, wherein the result of
the add operation comprises only a portion of the least
significant output bits of the adder.

7. The computing system of claim 1, wherein the circuitry
and logic are further operable to instruct the processor to:

access a first value in cache, determining that a no-hit bit

is set, and set a wait-for-way bit; and

access a second value in cache, and determine that the

wait-for-way bit is set, receive W from the cache, and
encode W in the register.

8. A cache controller for accessing an N-way cache,
comprising circuitry and logic for:

accessing a value from the cache comprising reading

values from a plurality of ways and keeping only the
value from a way W; and

encoding W in way bits of a register.
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9. The cache controller of claim 8, wherein the register
comprises N way bits, a wait-for-way flag, and a no-hit bit.

10. The cache controller of claim 8, wherein circuitry and
logic are further operable for checking way W for a desired
value without accessing any additional ways in the cache.

11. The cache controller of claim 8, further comprising an
adder, and wherein the circuitry and logic are further oper-
able for:

searching way W for the desired value only if the result

of an add operation in the adder indicates that the
desired value is within a present cache line.
12. The cache controller of claim 11, wherein the result of
the add operation comprises only a portion of the full add
operation.
13. The cache controller of claim 11, wherein the result of
the add operation comprises only a portion of the least
significant output bits of the adder.
14. The cache controller of claim 8, wherein the circuitry
and logic are further operable for:
accessing a first value in cache, determining that a no-hit
bit is set, and setting a wait-for-way bit; and

accessing a second value in cache, determining that the
wait-for-way bit is set, receiving W from the cache, and
encoding W in the register.

15. A method for way prediction in a processor having an
N-way cache, comprising:
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accessing a value from the cache comprising reading
values from a plurality of ways and keeping only the
value from a way W; and

encoding W in way bits of a register.

16. The method of claim 15, further comprising searching
way W for a desired value without accessing any additional
ways in the cache.

17. The method of claim 16, wherein the accessing the
value further comprises:

searching way W for the desired value only if taking the

result of an add operation indicates that the desired
value is within a present cache line.

18. The method of claim 17, wherein taking the result of
the add operation comprises taking only a portion of the full
add operation.

19. The method of claim 17, wherein taking the result of
the add operation comprises taking only a portion of the least
significant output bits of an adder.

20. The method of claim 15, further comprising:

accessing a first value in cache, determining that a no-hit

bit is set, and setting a wait-for-way bit; and
accessing a second value in cache, determining that the
wait-for-way bit is set, and encode W in the register.
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